X-ray diffraction studies of oxidized high-palladium alloys

William A. Brantley¹, Zhuo Cai^{2,3}, Efstratios Papazoglou¹, John C. Mitchell⁴, Susan J. Kerber⁵, Gregory P. Mann⁶, Tery L. Barr⁶

¹Section of Restorative Dentistry, Prosthodontics and Endodontics, College of Dentistry, ²Section of Oral Biology, College of Dentistry,

³(Now at The Texas A & M University System, Baylor College of Dentistry, Dallas, Texas, USA)

⁴Microscopic and Chemical Analysis Research Center (MARC),

Department of Geological Sciences, The Ohio State University, Columbus, Ohio, USA

⁵Material Interface, Inc., Sussex, Wisconsin, USA

⁶Department of Materials, Laboratory for Surface Studies, University of Wisconsin-Milwaukee,

Milwaukee, Wisconsin, USA

ABSTRACT

Objective. The purpose of this study was to use x-ray diffraction (XRD) to obtain new information about the oxide layers on four representative oxidized high-palladium alloys.

Methods. Cast specimens of two Pd-Cu-Ga alloys and two Pd-Ga alloys, with both polished and etched surfaces and air-abraded surfaces, were subjected to oxidation procedures recommended by the manufacturers. The specimens were analyzed by x-ray diffraction using CuK α radiation, and the peaks were compared to appropriate Joint Committee on Powder Diffraction Standards (JCPDS).

Results. The surface preparation procedure had a profound effect on the phases present in the oxide layers. For the specimens that had been polished and etched, CuGa₂O₄ and β -Ga₂O₃ were detected on the 79Pd-10Cu-9Ga-2Au alloy, whereas SnO, and CuGa, O, were detected on the 76Pd-10Cu-5.5Ga-6Sn-2Au alloy. The oxide layers on both Pd-Cu-Ga alloys contained Cu₂O, and the oxide layer on the 76Pd-10Cu-5.5Ga-6Sn-2Au alloy may contain β -Ga₂O₃. The principal phase in the oxide layers on both Pd-Ga alloys that had been polished and etched was In₂O₃, which exhibited extreme preferred orientation. No other phase was detected in the oxide layer on the 85Pd-10Ga-2Au-1Ag-1In alloy, whereas β-Ga₂O₂ was found in the oxide layer on the 75Pd-6Ga-6Au-6Ag-6.5In alloy. For the air-abraded specimens, β -Ga₂O₂ was not present in the oxide layers on the Pd-Cu-Ga alloys, and β-Ga₂O₂ was the major phase in the oxide layers on the Pd-Ga alloys. Palladium oxide(s) in varying amounts were detected for both surface preparations of the Pd-Cu-Ga alloys and for the air-abraded Pd-Ga alloys. Except for the 76Pd-10Cu-5.5Ga-6Sn-2Au alloy, the oxide layer caused minimal change in the lattice parameter of the palladium solid solution compared to that for the as-cast alloy.

Significance. Knowledge of the phases found in the oxide layers on these high-palladium alloys is of fundamental importance for interpreting differences in the adherence of dental porcelain to the metal substrates under static and dynamic conditions, and may provide guidance in the development of new high-palladium alloys with improved metal-ceramic bonding.

INTRODUCTION

It is well-known that adherence between dental porcelain and the alloy substrate generally depends upon development of strong chemical bonds across the interface through an oxide layer on the alloy, as well as upon mechanical interlocking at microirregularities created on the alloy surface by air abrasion (Philips, 1991; Craig, 1993). While occasionally a dental alloy may not form an external oxide (Mackert *et al.*, 1983) and porcelain adherence must be achieved through mechanical retention, Mackert *et al.* (1988) have shown that there is a direct relationship between oxide adherence and metal-ceramic bonding for alloys forming external oxides.

Although high-palladium dental alloys containing greater than about 75 wt% Pd have become popular for metal-ceramic restorations over the past decade because of their lower cost than gold alloys and their good mechanical properties (Carr and Brantley, 1991; Brantley et al., 1993), only limited information is available about their oxidation behavior. Cascone (1983) reported that both Ga2O3 and CuO external oxides, along with a CuO internal oxide, formed during simulated porcelain firing heat treatment for model Pd-Cu-Ga alloys, and the two surface oxides reacted to form $CuGa_2O_4$ spinel. Using x-ray diffraction (XRD), Hautaniemi et al. (1990) identified CuGa2O4 on the surface of an oxidized Pd-Cu-Ga alloy with a composition very similar to that of Option (J. M. Ney Company, Bloomfield, CT, USA) and Spartan (Williams Division, Ivoclar North America, Amherst, NY, USA). Bagby et al. (1990) also employed XRD to identify SnO₂ and CuGa₂O₄ on another oxidized Pd-Cu-Ga alloy (Deguplus 2, Degussa Dental, Inc., South Plainfield, NJ, USA). Using an indirect approach, van der Zel (1989) employed measurements of alloy weight changes during oxidation and emission spectroscopic analyses of HCl leaching solutions to deduce the phases originally present in the oxide layers. The compositions of subsurface oxides were determined by x-ray energy-dispersive spectroscopic analyses with the scanning electron microscope (SEM/EDS).

Fig. 1. X-ray diffraction pattern obtained with the Scintag PAD-V diffractometer for oxidized, polished and etched Pd-Cu-Ga alloy Spartan Plus.

Fig. 2. X-ray diffraction pattern obtained with the Philips diffractometer for oxidized air-abraded Pd-Cu-Ga alloy Spartan Plus.

Using experimental techniques developed by Ringle *et al.* (1983) and Mackert *et al.* (1988), Papazoglou *et al.* (1993) measured the adherence of Vita VMK dental porcelain (Vident, Baldwin Park, CA, USA) to four high-palladium alloys after debonding the porcelain in biaxial flexure. It was found that the porcelain adherence was significantly greater for the two Pd-Cu-Ga alloys (Spartan Plus, Williams/Ivoclar; Liberty, J.F. Jelenko & Company, Armonk, NY, USA), compared to the two Pd-Ga alloys (Protocol, Williams/Ivoclar; Legacy, Jelenko). The purpose of this investigation was to use XRD to obtain

detailed information about the phases present in the oxidized layers on these four alloys. No studies of the oxidation behavior of the Pd-Ga alloys have previously been reported. XRD analyses of the four highpalladium alloys in the as-cast condition were recently published (Brantley *et al.*, 1995).

MATERIALS AND METHODS

The Pd-Cu-Ga alloys selected for study (Spartan Plus, Williams/Ivoclar and Liberty, Jelenko) had compositions of 79Pd-10Cu-9Ga–2Au and 76Pd-10Cu-5.5Ga–6Sn-2Au, respectively, whereas the Pd-Ga alloys (Protocol, Williams/Ivoclar and Legacy, Jelenko) had compositions of 75Pd-6Ga–6Au-6Ag-6.5In and 85Pd-10Ga–2Au-1Ag-1In, respectively (Brantley *et al.*, 1995). The composition of the Spartan Plus alloy is identical to that of the previously mentioned Option and Spartan alloys, except for the absence of a small amount of boron (Brantley *et al.*, 1995).

Two types of oxidized specimens were prepared for each alloy. One cast specimen, 20 mm x 20 mm x 1.5 mm, used in the previous XRD investigation of the as-cast structure (Brantley et al., 1995), was metallographically polished through 0.05 µm alumina slurries, etched in aqua regia solutions (Mezger et al., 1988) and subjected to the initial oxidation procedure recommended by the manufacturer. These specimens were polished and etched prior to oxidation in order to have a reproducible level of surface roughness with minimal residual plastic deformation. Although recommended by the manufacturer, no subsequent air abrasion was performed on the two oxidized Jelenko (Liberty and Legacy) alloys. A second cast specimen of smaller dimensions, 10 mm x 10 mm x 1 mm, was air-abraded, following standard dental laboratory practice, and subjected to the same recommended oxidation procedure. A smaller size was used for the oxidized air-abraded specimens so that they could be used for further study.

The two Williams/Ivoclar alloys (Spartan Plus and Protocol) were oxidized by heating in vacuum in a conventional

dental porcelain furnace from 650° to $1,010^{\circ}$ C at a rate of 56° C per min with a 5 min hold at the peak temperature, whereas the two Jelenko alloys (Liberty and Legacy) were oxidized by heating in air from 704° to $1,010^{\circ}$ C at 56° C per min with no hold at the peak temperature.

The XRD patterns for all oxidized specimens were obtained at room temperature, using CuK α radiation ($\lambda = 1.54060$ Å). The oxidized, polished and etched specimens were analyzed by an x-ray diffractometer (PAD-V, Scintag, Sunnyvale, CA, USA) with a nickel filter, operating over a 20 range from 20°-100°

184 30.77 2.904 CuGa_Q_4 (2.934 and 30) Poor match 430 34.78 2.577 PdO - xH_Q (2.615 and 100) Poor match to JCPDS standard Identification based upon XPS results 358 36.05 2.490 CuGa_Q_4 (2.502 and 100) 135 37.96 (avg.)* 2.369 CuGa_Q_4 (2.395 and 12) Poor match because of peak breadth 155 38.81 2.319 159 43.07 2.098 CuGa_Q (2.395 and 12) Poor match because of peak breadth Shifted by adjacent CuGa_Q peak 165 43.59 2.075 CuGa_Q (2.074 and 17) 1,820 47.01 — 200 Palladium solid solution 125 53.98 1.697 CuGa_Q (1.694 and 10) 138 54.76 1.675 Cu_Q (1.668 and 60) 165 55.97 1.642 PdO • xH_Q (1.668 and 60) 171 230 63.63 1.461 CuGa_Q (1.679 and 35) 146 61.46 1.507 Cu_Q (1.210 and 27) 230 63.63 1.461 CuGa_Q (1.467 and 17) 139 73.30 1.290 Cu_Q (1.287 and		TX:00	ZEC AIR ABRAD	ED SPARTAN PLUS
184 30.77 2.904 CuGa_Q_ (2.934 and 30) Poor match 430 34.78 2.577 PdO \cdot XH_Q (2.615 and 100) Poor match to JCPDS standard identification based upon XPS results 358 36.05 2.490 CuGa_Q_ (2.502 and 100) 135 37.96 (avg.)* 2.369 CuGa_Q_ (2.395 and 12) Poor match because of peak breadth 155 38.81 2.319 155 38.81 2.319 Not identified 5,307 40.53 - 111 Palladium solid solution 159 43.07 2.098 Cu_Q (2.135 and 37) Poor match Shifted by adjacent CuGa_Q_ peak 165 43.59 2.075 CuGa_Q_ (2.074 and 17) 1,820 47.01 - 200 Palladium solid solution 125 53.98 1.697 CuGa_Q_ (1.694 and 10) 138 54.76 1.675 Cu_Q (1.668 and 60). 165 55.97 1.642 PdO \cdot XH_Q (1.668 and 60). 165 51.97 1.642 PdO \cdot XH_Q (1.668 and 60). 178 7.30 1.596 CuGa_Q_ (1.597 and 35) 146 61.46 1.507				
430 34.78 2.577 PdO-xH_0 (2.615 and 100) Poor match to JCPDS standard identification based upon XPS results 358 36.05 2.490 $CuGa_2O_4$ (2.502 and 100) 135 37.96 (avg.)" 2.369 $CuGa_2O_4$ (2.395 and 12) Poor match because of peak breadth 155 38.81 2.319 Not identified $5,307$ 40.53 - 111 Palladium solid solution 159 43.07 2.098 Cu_2O (2.135 and 37) Poor match Shifted by adjacent $CuGa_2O_4$ peak 165 43.59 2.075 $CuGa_2O_4$ (2.074 and 17) $1,820$ 47.01 - 200 Palladium solid solution 125 53.98 1.697 $CuGa_2O_4$ (1.694 and 10) 138 54.76 1.675 Cu_QO_4 (1.587 and 35) 146 61.46 1.507 Cu_QO_4 (1.597 and 35) 146 61.46 1.507 Cu_QO_4 (1.467 and 40) 1.034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu_QO_4 (1.265 and 6) 662 82.81 -	184	30.77	2.904	CuGa,O ₄ (2.934 and 30) Poor match
Identification based upon AFS results 358 36.05 2.490 CuGa ₂ O ₄ (2.502 and 100) 135 37.96 (avg.)* 2.369 CuGa ₂ O ₄ (2.395 and 12) Poor match because of peak breadth 155 38.81 2.319 159 43.07 2.098 Cu ₂ O (2.135 and 37) Poor match Shifted by adjacent CuGa ₂ O ₄ peak 165 43.59 2.075 CuGa ₂ O ₄ (2.074 and 17) 1,820 47.01 — 200 Palladium solid solution 125 53.98 1.697 CuGa ₂ O ₄ (1.698 and 60) 138 54.76 1.675 Cu ₂ O (1.668 and 60) 165 55.97 1.642 PdO-xH ₂ O (1.668 and 60) 165 55.97 1.642 PdO-xH ₂ O (1.668 and 60) 165 55.97 1.642 PdO-xH ₂ O (1.668 and 60) 178 7.73 1.596 CuGa ₂ O ₄ (1.597 and 35) 146 61.46 1.507 Cu ₂ O (1.610 and 27) 230 63.63 1.461 CuGa ₂ O ₄ (1.265 and 8) 162 73.30 1.290 Cu ₂ O ₄ (1.265 and 8) 862 82.81 — 3	430	34.78	2.577	PdO-xH ₂ O (2.615 and 100) Poor match to JCPDS standard
350 50.63 2.450 $Oucda_2A_4$ (2.032 and 12) 135 37.96 (avg.)* 2.369 $Cucda_2Q_4$ (2.032 and 12) Poor match because of peak breadth 155 38.81 2.319 Not identified 5.307 40.53 111 Paltadium solid solution 159 43.07 2.098 Cu_2O (2.135 and 37) Poor match Shifted by adjacent CuGa_ Q_4 peak 165 43.59 2.075 CuGa_ Q_4 (2.074 and 17) 1,820 47.01 - 200 Palladium solid solution 125 53.98 1.697 CuGa_Q (1.694 and 10) 138 54.76 1.675 Cu_Q O (1.668 and 60) 165 55.97 1.642 PdO-xH_Q (1.668 and 60) 165 55.97 1.642 PdO-xH_Q (1.467 and 35) 146 61.46 1.507 Cu_Q O (1.510 and 27) 230 63.63 1.461 CuGa_Q (1.287 and 17) 140 75.22 1.262 CuGa_Q (1.265 and 8) 862 82.81 - 210 Palladium solid solution 158 73.30 1.290 Cu_Q (1.287 and 17)	358	36.05	2 490	CuGa O (2 502 and 100)
Poor match because of peak breadth 155 38.81 2.319 Not identified 5,307 40.53 111 Paltadium solid solution 159 43.07 2.098 Cu ₂ O (2.135 and 37) Poor match Shifted by adjacent CuGa ₂ O ₄ peak 165 43.59 2.075 CuGa ₂ O, (2.074 and 17) 1,820 47.01 200 Palladium solid solution 125 53.98 1.697 CuGa ₂ O, (1.694 and 10) 138 54.76 1.675 Cu ₂ O (1.1668 and 60) 165 55.97 1.642 PdO+xH ₂ O (1.668 and 60). 165 55.97 1.642 PdO-xH ₂ O (1.597 and 35) 166 61.46 1.507 Cu ₂ O (1.510 and 27) 230 63.63 1.461 CuGa ₂ O ₄ (1.467 and 40) 1,034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu ₂ O (1.265 and 8) 862 82.81 311 Palladium solid solution 152 91.50 1.075 CuGa ₂ O ₄ (1.080 and 12)	135	37,96 (avo.)*	2.369	CuGa Q. (2.395 and 12)
155 38.81 2.319 Not identified 5,307 40.53 111 Palladium solid solution 159 43.07 2.098 Cu_2O (2.135 and 37) Poor match Shifted by adjacent CuGa $_2O_4$ peak 165 43.59 2.075 CuGa $_2O_4$ (2.074 and 17) 1,820 47.01 200 Palladium solid solution 125 53.98 1.697 CuGa $_2O_4$ (1.694 and 10) 138 54.76 1.675 Cu $_O$ (1.668 and 60) 165 55.97 1.642 PdO - xH_O (1.668 and 60). 165 55.97 1.642 PdO - xH_O (1.668 and 35). 190 57.73 1.596 CuGa $_2O_4$ (1.597 and 35) 146 61.46 1.507 Cu $_2O_4$ (1.467 and 40) 1.034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu $_2O_4$ (1.287 and 17) 140 75.22 1.262 CuGa $_2O_4$ (1.285 and 8) 862 82.81 311 Palladium solid solution 152 91.50 1.075 CuGa $_2O_4$ (1.080 and 12)				Poor match because of peak breadth
5,307 40.53 111 Palladlum solid solution 159 43.07 2.098 Cu_2O (2.135 and 37) Poor match Shifted by adjacent CuGa_Q, peak 165 43.59 2.075 CuGa_Q, (2.074 and 17) 1,820 47.01 - 200 Palladium solid solution 125 53.98 1.697 CuGa_Q, (1.694 and 10) 138 54.76 1.675 Cu_Q (1.668 and 60) 165 55.97 1.642 PdO-xH_Q (1.668 and 60). 190 57.73 1.596 CuGa_Q, (1.597 and 35) 146 61.46 1.507 Cu_Q (1.467 and 40) 1,034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu_Q (1.287 and 17) 140 75.22 1.262 CuGa_Q, (1.265 and 8) 862 82.81 311 Palladium solid solution 152 91.50 1.075 CuGa_Q, (1.080 and 12)	155	38.81	2.319	Not identified
159 43.07 2.098 Cu_2O (2.135 and 37) Poor match Shifted by adjacent $CuGa_2O_4$ peak 165 43.59 2.075 $CuGa_2O_4$ (2.074 and 17) 1,820 47.01 - 200 Palladium solid solution 125 53.98 1.697 $CuGa_2O_4$ (1.694 and 10) 138 54.76 1.675 Cu_2O (1.668 and 60) 165 55.97 1.642 PdO-xH_O (1.668 and 60) 165 55.97 1.642 PdO-xH_O (1.668 and 60) 190 57.73 1.596 CuGa_O_4 (1.597 and 35) 146 61.46 1.507 Cu_2O (1.510 and 27) 230 63.63 1.461 CuGa_O_4 (1.467 and 40) 1.034 68.68 - 220 Palladium solid solution 158 73.30 1.290 Cu_2O (1.287 and 17) 140 75.22 1.262 CuGa_O_4 (1.265 and 8) 862 82.81 - 311 Palladium solid solution 152 91.50 1.075 CuGa_2O_4 (1.080 and 12)	5,307	40.53		111 Palladium solid solution
Shifted by adjacent $CuGa_2O_4$ peak 165 43.59 2.075 $CuGa_2O_4$ (2.074 and 17) 1,820 47.01 - 200 Palladium solid solution 125 53.98 1.697 $CuGa_2O_4$ (1.694 and 10) 138 54.76 1.675 Cu_2O (1.668 and 60) 165 55.97 1.642 PdO+xH_2O (1.668 and 60). 300 57.73 1.596 $CuGa_2O_4$ (1.597 and 35) 146 61.46 1.507 Cu_2O (1.510 and 27) 230 63.63 1.461 $CuGa_2O_4$ (1.467 and 40) 1,034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu_2O (1.287 and 17) 140 75.22 1.262 $CuGa_2O_4$ (1.265 and 8) 862 82.81 311 Palladium solid solution 152 91.50 1.075 $CuGa_2O_4$ (1.080 and 12)	159	43.07	2.098	Cu ₂ O (2.135 and 37) Poor match
165 43.59 2.075 CuGa_Q, (2.074 and 17) 1,820 47.01 - 200 Palladium solid solution 125 53.98 1.697 CuGa_Q, (1.694 and 10) 138 54.76 1.675 Cu_Q (1.668 and 60) 165 55.97 1.642 PdO-xH_Q (1.668 and 60). 165 55.97 1.642 PdO-xH_Q (1.668 and 60). 190 57.73 1.596 CuGa_Q, (1.597 and 35) 146 61.46 1.507 CuGa_Q, (1.467 and 40) 1.034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu_Q (1.287 and 17) 140 75.22 1.262 CuGa_Q, (1.265 and 8) 862 82.81 311 Palladium solid solution 152 91.50 1.075 CuGa_Q, (1.080 and 12)	1			Shifted by adjacent CuGa ₂ O ₄ peak
1,820 47.01 — 200 Palladium solid solution 125 53.98 1.697 CuGa_Q, (1.694 and 10) 138 54.76 1.675 Cu_O (1.668 and 60) 165 55.97 1.642 PdO-xH_O (1.668 and 60). 3imilar discrepancy with standard as peak at 34.78°. Similar discrepancy with standard as peak at 34.78°. 190 57.73 1.596 CuGa_Q, (1.597 and 35) 146 61.46 1.507 Cu_Q (1.510 and 27) 230 63.63 1.461 CuGa_Q, (1.467 and 40) 1,034 66.68 — 220 Palladium solid solution 158 73.30 1.290 Cu_Q (1.287 and 17) 140 75.22 1.262 CuGa_Q, (1.265 and 8) 862 82.81 — 311 Palladium solid solution 152 91.50 1.075 CuGa_Q, (1.080 and 12)	165	43.59	2.075	CuGa,O, (2.074 and 17)
125 53.98 1.697 CuGa ₂ O ₄ (1.694 and 10) 138 54.76 1.675 Cu ₂ O (1.668 and 60) 165 55.97 1.642 PdO-xH ₂ O (1.668 and 60) 165 55.97 1.642 PdO-xH ₂ O (1.668 and 60) 165 55.97 1.642 PdO-xH ₂ O (1.668 and 60) 165 55.97 1.642 PdO-xH ₂ O (1.668 and 60) 166 55.97 1.642 PdO-xH ₂ O (1.668 and 60) 190 57.73 1.596 CuGa ₂ O ₄ (1.597 and 35) 146 61.46 1.507 Cu ₂ O (1.510 and 27) 230 63.63 1.461 CuGa ₂ O ₄ (1.467 and 40) 1,034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu ₂ O (1.287 and 17) 140 75.22 1.262 CuGa ₂ O ₄ (1265 and 8) 862 82.81 - 311 Palladium solid solution 152 91.50 1.075 CuGa ₂ O ₄ (1.080 and 12)	1,820	47.01		200 Palladium solid solution
138 54.76 1.675 Cu ₂ O (1.668 and 60) 165 55.97 1.642 PdO+xH ₂ O (1.668 and 60) 3imilar discrepancy with standard as peak at 34.78° Similar discrepancy with standard as peak at 34.78° 190 57.73 1.596 CuGa ₂ O ₄ (1.597 and 35) 146 61.46 1.507 Cu ₂ O (1.510 and 27) 230 63.63 1.461 CuGa ₂ O ₄ (1.467 and 40) 1,034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu ₂ O (1.287 and 17) 140 75.22 1.262 CuGa ₂ O ₄ (1.265 and 8) 862 82.81 311 Palladium solid solution 152 91.50 1.075 CuGa ₂ O ₄ (1.080 and 12)	125	53.98	1.697	CuGa2O4 (1.694 and 10)
165 55.97 1.642 PdO-xH ₂ O (1.668 and 60). Similar discrepancy with standard as peak at 34.76° . 190 57.73 1.596 CuGa ₂ O ₄ (1.597 and 35) 146 61.46 1.507 Cu ₂ O (1.510 and 27) 230 63.63 1.461 CuGa ₂ O ₄ (1.467 and 40) 1,034 68.68 — 220 Paladium solid solution 158 73.30 1.290 Cu ₂ O (1.287 and 17) 140 75.22 1.262 CuGa ₂ O ₄ (1.265 and 8) 862 82.81 — 311 Palladium solid solution 152 91.50 1.075 CuGa ₂ O ₄ (1.080 and 12)	138	54.76	1.675	Cu_2O (1.668 and 60)
as peak at 34.78°. 190 57.73 1.596 CuGa_Q_4 (1.597 and 35) 146 61.46 1.507 Cu_Q (1.510 and 27) 230 63.63 1.461 CuGa_Q_4 (1.467 and 40) 1,034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu_Q (1.287 and 17) 140 75.22 1.262 CuGa_Q (1.265 and 8) 862 82.81 311 Palladium solid solution 152 91.50 1.075 CuGa_2O_4 (1.080 and 12)	165	55.97	1.642	PoO+xH ₂ O (1.668 and 60). Similar discrepancy with standard
190 57.73 1.596 $CuGa_2O_4$ (1.597 and 35) 146 61.46 1.507 Cu_2O (1.510 and 27) 230 63.63 1.461 $CuGa_2O_4$ (1.467 and 40) 1,034 68.68 - 220 Palladium solid solution 158 73.30 1.290 Cu_2O (1.287 and 17) 140 75.22 1.262 $CuGa_2O_4$ (1.265 and 8) 862 82.81 - 311 Palladium solid solution 152 91.50 1.075 $CuGa_2O_4$ (1.080 and 12)				as peak at 34.78°.
146 61.46 1.507 Cu ₂ O (1.510 and 27) 230 63.63 1.461 CuGa ₂ O ₄ (1.467 and 40) 1.034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu ₂ O (1.287 and 17) 140 75.22 1.262 CuGa ₂ O ₄ (1.265 and 8) 862 82.81 311 Palladium solid solution 434 87.55 222 Palladium solid solution 152 91.50 1.075 CuGa ₂ O ₄ (1.080 and 12)	190	57.73	1.596	CuGa ₂ O ₄ (1.597 and 35)
230 63.63 1.461 $CuGa_2O_4$ (1.467 and 40) 1,034 68.68 220 Palladium solid solution 158 73.30 1.290 Cu_2O (1.287 and 17) 140 75.22 1.262 $CuGa_2O_4$ (1.265 and 8) 862 82.81 311 Palladium solid solution 152 91.50 1.075 $CuGa_2O_4$ (1.080 and 12)	146	61.46	1.507	Cu ₂ O (1.510 and 27)
1,034 66.68 220 Palladium solid solution 158 73.30 1.290 Cu ₂ O (1.287 and 17) 140 75.22 1.262 CuGa ₂ O ₄ (1.265 and 8) 862 82.81 311 Palladium solid solution 434 87.55 222 Palladium solid solution 152 91.50 1.075 CuGa ₂ O ₄ (1.080 and 12)	230	63.63	1.461	CuGa ₂ O ₄ (1.467 and 40)
158 73.30 1.290 Cu ₂ O (1.287 and 17) 140 75.22 1.262 CuGa ₂ O ₄ (1.265 and 8) 862 82.81 — 311 Palladium solid solution 434 87.55 — 222 Palladium solid solution 152 91.50 1.075 CuGa ₂ O ₄ (1.080 and 12)	1,034	68.68		220 Palladium solid solution
140 75.22 1.252 CuGa_O, (1.265 and 8) 862 82.81 — 311 Palladium solid solution 434 87.55 — 222 Palladium solid solution 152 91.50 1.075 CuGa_O, (1.080 and 12)	158	73.30	1.290	Cu ₂ O (1.287 and 17)
862 82.81 — 311 Pairadium solid solution 434 87.55 — 222 Pailadium solid solution 152 91.50 1.075 CuGa $_2O_4$ (1.080 and 12)	140	75.22	1,262	CuGa20, (1.265 and 8)
222 raisouth solid solution 152 91.50 1.075 CuGa ₂ O ₄ (1.080 and 12)	862	82.81		311 Mailadium Solid Solution
a na serie a serie a serie a presidente presidente de la serie de la serie de la serie de la serie de la serie La serie de la s	454 152	91.50	1.075	$CuGa_2O_4$ (1.080 and 12)
				and a second

INMARY OF Y RAV DIFFRACTION DEAKS F

at a continuous scanning rate of 0.5° per min and a photoncounting interval of 0.03°. The oxidized air-abraded specimens were analyzed with two x-ray diffractometers. A highprecision wide-range goniometer (Philips Electronics PW 1316/90, Philips, Eindhoven, The Netherlands) with XRG 3100 x-ray generator, DMS-41 measuring system and graphite monochromator was operated over a 2θ range from 20°-100° at step intervals of 0.01° and a photon-counting time of 3 s per step. In addition, x-ray diffraction patterns were obtained over the narrower 2θ range of 20° - 70° to confirm the locations of the peaks from the oxides, using a Scintag Model 2000 XRD system with a solid state analysis filter. These scans were performed at 20 steps of 0.030° and photon-counting times of 0.36 s (Spartan Plus) or 0.45 s (Liberty, Legacy and Protocol) per step. The smaller oxidized air-abraded specimens were mounted on a silicon single crystal substrate having a special orientation which did not yield significant diffraction peaks.

The peaks for the oxide layers were indexed to the JCPDS (Joint Committee on Powder Diffraction Standards, Swarthmore, PA, USA) file of pure polycrystalline powder standards. The Nelson-Riley analysis (Cullity, 1978) was employed with linear regression to determine the lattice parameter of the palladium solid solution in the four oxidized alloys from the positions of the 111, 200, 220, 311 and 222 peaks. Accuracy of the results obtained with the Scintag PAD-V diffractometer was validated by agreement of the lattice parameter of the palladium solid solution for one as-cast alloy (Legacy) serving as a control within 0.01 Å of the value previously determined (Brantley et al., 1995) with the Philips diffractometer, which was periodically calibrated with crystallographic standards. Accuracy of the results obtained with the Scintag Model 2000 diffractometer was validated by comparison of the lattice parameter of the palladium solid solution in the oxidized alloys and the positions of the peaks from the oxides with values obtained with the Philips diffractometer; these values generally agreed within 0.01 Å.

RESULTS

The x-ray diffraction pattern for the oxidized, polished and etched 79Pd-10Cu-9Ga-2Au alloy Spartan Plus is shown in Fig. 1. The diffracted x-ray intensity obtained during continuous scanning with the Scintag PAD-V diffractometer is given in terms of counts per second (cps). Each peak has been labeled with the corresponding phase(s); there are four peaks that may correspond to overlapping peaks from two different phases. The phases detected in the oxide layer were CuGa, O₄ (standard 26-514), β-Ga₂O₂ (standard 41-1103), Cu₂O (standard 5-667), and possibly hydrated palladium oxide (PdO·xH_oO) (standard 9-254). The matches of the peak positions with those predicted from the four JCPDS standards using CuKa radiation were excellent, as corresponding values for interplanar spacings (d-spacings) were generally within 0.01 Å for all peaks from

each phase. Comparisons of predicted peak positions for α -Ga₂O₃ (standard 41-1103), CuO (standard 41-524), and PdO (standard 41-1107) with peaks for the oxide layer indicated that these phases were not present.

The x-ray diffraction pattern in Fig. 2 shows that the oxide layer on air-abraded Spartan Plus consisted of CuGa₂O₄, Cu₂O, and perhaps both PdO·xH₂O and PdO. The diffracted x-ray intensity obtained with the Philips diffractometer is given in terms of counts per 3 s, the time interval for each step during scanning. The peak positions and their interpretation have been summarized in Table 1. In contrast to the oxidized, polished and etched specimen in Fig. 1, no β-Ga₂O₃ was present. There was similar excellent agreement for all of the CuGa₂O₄ and Cu₂O peaks with the d-spacings in the JCPDS standards, except for the $CuGa_2O_4$ peak at 30.77° where there was a discrepancy of 0.03 Å, and the Cu₂O peak at 43.07° where there was overlap with an adjacent $CuGa_2O_4$ peak. Assignment of the strongest oxide peak at 34.78° to PdO·xH₂O was based upon x-ray photoelectron spectroscopic (XPS) analysis of a nominally identical specimen, although the d-spacings for the two peaks indexed to this oxide were 0.03 Å to 0.04 Å less than those for the JCPDS standard. A peak corresponding to the strongest peak for PdO at d = 2.647 Å was

Fig. 3. X-ray diffraction pattern obtained with the Philips diffractometer for oxidized air-abraded Pd-Cu-Ga alloy Liberty.

Fig. 4. X-ray diffraction pattern obtained with the Philips diffractometer for oxidized air-abraded Pd-Cu-Ga alloy Legacy.

detected with the Scintag Model 2000 diffractometer, but was not evident in the detailed (20, Intensity) data for Fig. 2.

Analysis of the x-ray diffraction pattern for the oxidized, polished and etched 76Pd-10Cu-5.5Ga-6Sn-2Au alloy Liberty indicated that the principal phases in the oxide layer were SnO₂, $CuGa_2O_4$ and Cu_2O ; β -Ga_2O_3 and PdO·xH_2O also appeared to be present. Other than the strongest peak for SnO₂ (standard 41-1445) where there was a difference of 0.02 Å, the calculated d-spacings of peaks observed for the oxide layer were within 0.01 Å of values given for the SnO_2 , $CuGa_2O_4$ and Cu_2O_4 standards. All peaks for the CuGa₂O₄ standard were detected, as were all peaks for the SnO₂ standard with relative intensities > 4 except for the peak at d = 1.154 Å, which was obsured by the 311 peak for the palladium solid solution; the three strongest peaks for the Cu₂O standard were also detected. A peak at 34.85°, located between much stronger peaks for SnO_2 and $CuGa_2O_4$, suggested the presence of β -Ga₂O₃ and PdO·xH₂O although the matches of the d-spacings to the

JCPDS standards were poor (differences of 0.02 Å and 0.04 Å, respectively). Since the other strong peaks for β -Ga₂O₃ were obscured by peaks for CuGa₂O₄ and SnO₂, there was some uncertainty about the presence of β -Ga₂O₃. Moreover, while six of the seven strongest peaks for α -Ga₂O₃ lie at nearly the same positions as peaks for SnO₂ and CuGa₂O₄, the absence of the d = 1.815 Å peak for the JCPDS standard suggested that α -Ga₂O₃ was not present in the oxide layer. Comparison of observed peak positions with JCPDS 41-524 indicated that CuO was not present.

The x-ray diffraction pattern for oxidized airabraded Liberty (Fig. 3) and the analysis of the XRD peaks detected with the Philips diffractometer (Table 2) show that the major phase in the oxide layer was SnO_2 . The interplanar spacings agreed within 0.01 Å of the JCPDS values, except for the strongest peak at 26.76° where the discrepancy was 0.02 Å. Four of the five strongest peaks from the JCPDS for CuGa₂O₄ were present, and there was excellent agreement of the d-spacings within 0.01 A of the values from the JCPDS. However, there was poor agreement for the broad $CuGa_2O_4$ peak at 30.99°, where the d-spacing was 0.05 Å less than that from the JCPDS. Palladium oxide(s) also appeared to be present in the oxide layer. The match of the peak at 34.82° to the strongest PdO·xH₂O peak may be poor because the peak position has been additionally shifted by the adjacent SnO₂ peak, and another peak for PdO·xH₂O may be a component of the SnO_2 peak at 54.92°; the $PdO \cdot xH_0 O$ peak at d = 1.303 Å was not detected. While the strongest peaks for Cu₂O were not observed, the presence of PdO could not be ruled out because the strongest peaks nearly coincide with SnO_2 peaks. Definitive conclusions about the palladium oxide species in this oxide layer and the presence of Cu₂O will require XPS analyses, which are in progress for this alloy.

Table 3 presents the x-ray diffraction

pattern for the oxidized, polished and etched 85Pd-10Ga-2Au-1Ag-1In alloy Legacy. All peaks other than those for the alloy substrate have been indexed to body-centered cubic (bcc) In₂O₂ (standard 6-416). All of the strongest peaks for β -Ga₂O₃ and α -Ga₂O₃ were missing; the α -Ga₂O₃ peak at d = 2.491 Å is nearly coincident with the In_2O_3 peak at d = 2.483 Å. Comparisons of the peak positions in Table 3 with the JCPDS indicated that none of the silver and palladium oxides were present, nor were any of the $(Ga,In)_2O_3$, β -GaInO₃, AgGaO₂, AgInO₂ mixed oxides. Table 3 shows that the In₂O₃ phase had an extremely high degree of preferred orientation. The intensity of the strongest In_2O_3 peak at 22.04° (d = 4.030 Å) was 1,947 cps (counts per second), which was greater than that of the 200 peak for the palladium solid solution matrix of the substrate at 46.73° (1,190 cps); the maximum intensity for the 111 peak of the palladium solid solution at 40.16° was 6,870 cps. The strongest In_2O_3 peak in Table 3 corresponds to the 211 reflection, which is only the fifth-strongest peak for the

DXIDIZED AIR-ABRADED LIBERTY				
: 				
212	26.76	3.329	SnO_2 (3.347 and 100)	
112	30.99 (ava.)	2.883	CuGa.O. (2.934 and 30)	
			Poor match	
253	34.01	2.634	PdO (2.647 and 100)	
000	0.00	0 274	SnO_{2} (2.643 and 75)	
240	04.02	2.9/4	Poor match	
166	35.73 (avg.)	2.511	CuGa ₂ O ₄ (2.502 and 100)	
146	38.10 (avg.)	2.360	SnO ₂ (2.369 and 21)	
153	39.17 (avg.)	2.298	SnO ₂ (2.309 and 4)	
9 975	10 60	in an	Indicates preferred orientation	
131	43.51	2.078	CuGa,O, (2.074 and 17)	
986	47.02		200 Palladium solid solution	
209	51.93	1.759	SnO ₂ (1.764 and 57)	
136	54.92 (avg.)	1.671	SnO ₂ (1,675 and 14)	
			PdO-xH O (1.668 and 60)	
140	57.61	1.599	CuGa ₂ O ₄ (1.597 and 35)	
			SnO ₂ (1.593 and 6)	
143	62.02 (avg.)	1.495	SnO ₂ (1.498 and 11)	
14/ 145	63.28 64.72	1.468	$CuGa_2O_4$ (1.467 and 40)	
136	65.94	1.415	SnO ₂ (1.416 and 14)	
776	68.68		220 Palladium solid solution	
123	71.38	1.320	SnO ₂ (1.322 and 6)	
125	78.53	1.217	SNU ₂ (1.215 and 9) 211 Palladium solid solution	
391	87.50		222 Palladium solid solution	
121	89.63	1.092	SnO ₂ (1.092 and 7)	
120 Sectors	90.75	1.082	SnO (1.081 and 8)	

SUMMARY OF X-RAY DIFFRACTION PEAKS FOR

 In_2O_3 standard at d = 4.130 Å, with a relative intensity of 13% of that for the strongest 222 peak. The latter peak at d = 2.921 Å was missing for the oxide layer, as was the second-strongest 440 peak for the In_2O_3 standard at d = 1.788 Å, which has a relative intensity of 36% of that for the 222 reflection. The d-spacings for the other peaks from the In_2O_3 phase were generally lower than values from the JCPDS, and the peaks at 45.06° and 72.92° were poor matches.

The x-ray diffraction pattern for oxidized air-abraded Legacy in Fig. 4 was dramatically different from that for the oxidized, polished and etched alloy. The oxide layer consisted of β -Ga₂O₃ and PdO. The matches for all the peaks in Fig. 4 obtained with the Philips diffractometer to the d-spacings in the β -Ga₂O₃ JCPDS standard were excellent, as shown in Table 4, with differences not exceeding 0.01 Å, except for the peak at 43.43° where the discrepancy was 0.02 Å. The peaks at 33.69° and 33.91° matched the d-spacings for PdO within 0.01 Å. The presence at 52.61° of the normally very weak peak from the JCPDS where d = 1.744 Å indicated that β -Ga₂O₃ has substantial preferred orientation in oxidized air-abraded Legacy, and this was supported by comparing the relative intensities for other peaks in Fig. 4.

Fig. 5 presents the x-ray diffraction pattern for the oxidized, polished and etched 75Pd-6Ga-6Au-6Ag-6.5In alloy Protocol. All of the peaks for the oxide layer have been indexed to bcc In_2O_3 and β -Ga₂O₃, other than the small peak at approximately 36.4° which does not match peaks for PdO·xH₂O and PdO. It was concluded that α -Ga₂O₃ was not present, since the four strongest peaks for the JCPDS standard were not observed. Further comparisons of the peak positions in Fig. 5 with the JCPDS indicated that none of the silver and palladium oxides were present, nor were any of the $(Ga,In)_2O_3$, β -GaInO₃, AgGaO₂, and AgInO₂ mixed oxides. As with oxidized Legacy, the In2O3 phase has extremely high preferred orientation, with the 211 peak at 22.10° (d = 4.019 Å) having a maximum intensity of 2,370 cps. For comparison, the maximum intensities of the 111 peak at 39.80° and the 200 peak at 46.28° for the palladium solid solution of the alloy substrate were 4,664 cps and 1,873 cps, respectively. Also as with oxidized Legacy, the d-spacings for the In_2O_2 phase were generally less than those from the JCPDS. There were poor matches for the 321 peak at 32.90°, the 332 peak at 41.47°, and the 622 peak at 60.29°, which is nearly coincident with a peak for β -Ga₂O₃. In all but one case, the d-spacings corresponding to the observed peaks for the β -Ga₂O₃ phase in the oxide layer were within 0.01 A of the values for the JCPDS. The exception was the β -Ga₂O₂ peak at 23.81° (d = 3.734 Å), where the difference of 0.05Å with the JCPDS is attributed to the overlapping shoulder of the 211 In₂O₃ peak. The relatively high intensity of the peak at 23.81° indicates some preferred orientation for the β -Ga₂O₃ phase in the oxide layer, since this is a weak peak for the standard with a relative intensity of only 2% of that for the strongest peak at d = 2.823 Å (31.67°). Further indication of preferred orientation is the strong β -Ga₂O₃ peak at 72.16°, where the corresponding peak in the standard has a relative intensity of

only 5% of that for the strongest peak.

The x-ray diffraction pattern for oxidized air-abraded Protocol in Fig. 6 indicates that the oxide layer consisted of β -Ga₂O₃ and PdO; no peaks for In₂O₃ were detected. The peak positions obtained with the Philips diffractometer and their interpretation have been summarized in Table 5. While the general compositions of the oxide layers appeared to be very similar for both Pd-Ga alloys, comparison of Figs. 4 and 6 indicated the relative intensities of the oxide peaks were stronger for Protocol. The agreement between the d-spacings of the peaks for β -Ga₂O₂ in the oxide layer and the corresponding JCPDS peaks was within 0.01 Å, except for the peaks at 31.88° and 43.46° where the agreement was within 0.02 A; a similar result was found with the latter peak for Legacy. The presence at 52.64° of the normally very weak peak for the standard indicated (as for Legacy) that the β -Ga₂O₃ has preferred orientation, which is again supported by comparisons of the relative intensities of other peaks. The d-spacings for the peaks assigned to PdO in Fig. 6 matched the values in the standard to within 0.015 Å.

The average lattice parameters of the palladium solid solution matrix obtained by the Nelson-Riley analysis of the

Fig. 5. X-ray diffraction pattern obtained with the Scintag PAD-V diffractometer for oxidized, polished and etched Pd-Ga alloy Protocol.

Fig. 6. X-ray diffraction pattern obtained with the Philips diffractometer for oxidized air-abraded Pd-Ga alloy Protocol.

data from the three diffractometers for the oxidized alloy substrates (two surface conditions) are given in Table 6 and compared to values obtained for the as-cast alloys (Brantley *et al.*, 1995). The agreement within 0.01 Å of the values of lattice parameter for the as-cast and oxidized conditions of three alloys is the same as that found in the previous study for repeated measurements and duplicate specimens of each as-cast alloy. Hence, within the precision of the present XRD measurements, the lattice parameter of the palladium solid solution for these alloys was minimally changed by oxidation and the surface preparation procedure. The difference of 0.03 Å between lattice parameters of the palladium solid solution for as-cast and oxidized Liberty is attributed to the relatively thick oxide layer on this alloy.

DISCUSSION

The complexity of the oxide layers on representative Pd-Cu-Ga alloys subjected to each manufacturer's recommended oxidation procedure is much greater than previously reported. Using XRD, Hautaniemi *et al.* (1990)

identified CuGa₂O₄ on an oxidized Pd-Cu-Ga alloy with a composition nearly identical to that of Spartan Plus, whereas Bagbyet al. (1990) identified both SnO_2 and $CuGa_2O_4$ in the oxidized layer on a Pd-Cu-Ga-Sn alloy with a composition somewhat similar to Liberty. In this study, comparison of the XRD peak positions with the JCPDS indicated that perhaps four phases were present in the oxide layer on oxidized, polished and etched Spartan Plus $(CuGa_2O_4, \beta$ -Ga_2O_3, Cu_2O, and PdO·xH_2O), whereas five phases may be present in the oxide layer on oxidized, polished and etched Liberty (SnO₂, $CuGa_2O_4$, Cu_2O_1 , and perhaps β - Ga_2O_3 and PdO· xH_2O). When air-abraded specimens of these Pd-Cu-Ga alloys were oxidized, β -Ga₂O₂ was not present in the oxide layer. The excellent agreement within generally 0.01 Å of the d-spacings for the peaks from the two oxidized Pd-Cu-Ga alloys with corresponding positions for the pure oxide JCPDS standards not only validated the accuracy of the present XRD analyses, but suggested that the oxide phases in the oxide layers on the two Pd-Cu-Ga alloys had relatively little substitutional solid solution incorporation of other cation species.

As previously noted, the presence of α -Ga₂O₂ in the oxide layer on oxidized, polished and etched Liberty cannot be ruled out in principle, because the strongest peaks for this phase coincide with peaks for $CuGa_2O_4$ and SnO_2 . Kohn *et al.* (1957) pointed out that striking analogies occur between the oxides of aluminum and gallium, and referred to β -Ga₂O₃ as the high-temperature form of gallium oxide (gallia). Geller (1960) subsequently emphasized that $\beta\mbox{-}Ga_2O_3$ is actually the thermodynamically stable form of gallium oxide at room temperature; earlier research by Foster and Stumpf (1951) showed that, while α -Ga₂O₃ forms at lower temperatures than does β -Ga₂O₃, the α -phase is metastable. Hence, the absence of α -Ga₂O₃ in the oxide layer on Liberty is plausible.

The crystal structures of the oxide phases on the

oxidized Pd-Cu-Ga alloys are as follows: CuGa₂O₄ (cubic spinel structure); β -Ga₂O₃ (monoclinic, which thereby has a very large number of XRD peaks); SnO₂ (tetragonal); Cu₂O (cubic); possibly PdO•xH₂O (tetragonal) and PdO (tetragonal) are also present. The lattice parameters from the JCPDS for the pure oxides are provided in Table 7. The crystal structure of the rhombohedral (hexagonal) α -Ga₂O₃ phase, which is isostructural with α -Al₂O₃, has been discussed by Marezio and Remeika (1967).

The much simpler compositions of the oxide layers on the Pd-Ga alloys, Legacy and Protocol, result from the fewer elements in these alloys that form stable room-temperature oxides compared to the two Pd-Cu-Ga alloys studied. Only In_2O_3 was detected on oxidized, polished and etched Legacy, whereas both In_2O_3 and β -Ga₂O₃ were detected on oxidized, polished and etched Protocol. In contrast, when both as-cast Pd-Ga alloys were air-abraded (instead of being polished and etched) and oxidized, the oxide layers contained β -Ga₂O₃ and palladium oxide(s); no In_2O_3 was detected in the oxide layer on either alloy. The matches of the d-spacings to the JCPDS standard were generally within 0.01 Å for PdO, and XPS

* ΑΒ L≈ β	SUMMARY OF OXIDE X-RAY DIFFRACTION PEAKS FROM >> DIZED POLISHED AND ETCHED LEGACY				
		na linana antina	ernenten del Terrette del contra de la contra de la contra del terrette de la contra del terrette de la contra		
1,947	22.04	4.030	bcc $\ln_2 O_3$ (4.130 and 13)		
185	36.14	2.483	bcc In ₂ O ₃ (2.529 and 33)		
122	42.08	2.146	bcc $\ln_2 O_3$ (2.157 and 6)		
75	44.12	2.051	bcc In ₂ O ₃ (2.066 and 1)		
65	45.06 (avg.)	2.013	bcc In ₂ O ₃ (1.984 and 10)		
61	60.89	1.520	bcc in ₂ O ₃ (1.525 and 24)		
72	72.92	1.296	bcc In ₂ O ₃ (1.352 and 2)		
	an an an an Araba an				

	14BLE 4 SUMMARY OF X-RAY DIFFRACTION PEAKS FOR CXIDIZED AIR-ABRADED LEGACY				
	73	29.98	2.979	β -Ga ₂ O ₃ (2.971 and 54)	
	68 65	30.23 30.36	2.954 2.941	β-Ga ₂ O ₃ (2.945 and 49) β-Ga ₂ O ₃ (2.934 and 57)	
	79 105	31.82 33.69	2.810 2.658	β-Ga ₂ O ₃ (2.823 and 100) β-Ga ₂ O ₃ (2.676 and 17) PdO (2.669 and 22)	
	108 94 105	33.91 35.19 38.46	2.642 2.548 2.338	PdO (2.647 and 100) β-Ga ₂ O ₃ (2.550 and 68) β-Ga ₂ O, (2.344 and 38)	
3.	,650 75 001	40.17 43.43 46.56	 2.082	111 Palladium solid soluti β-Ga,O, (2:101 and 10) 200 Palladium solid soluti	on on
	40	52.61	1.738	β-Ga ₂ O ₃ (1.744 and 1) Indicates preferred orient	ation
	41	54.26	1.689	β-Ga ₂ O ₃ (1.685 and 4) β-Ga ₂ O ₃ (1.682 and 4) PdO (1.676 and 20)	
	54 46	57.62 60.83	1.598 1.521	β-Ga ₂ O ₃ (1.600 and 18) β-Ga ₂ O ₃ (1.520 and 18)	
	52	64.65	1.441	β-Ga O, (1.453 and 16) β-Ga O, (1.446 and 14) β-Ga O, (1.442 and 46)	
	764 575 269	68.14 81.89 86.67	_ +	220 Palladium solid soluti 311 Palladium solid soluti 222 Palladium solid soluti	ion ion ion
1					

studies are in progress to confirm the oxide species identified by XRD. While the strongest peak for PdO_2 (standard 34-1101) nearly coincides with a peak for PdO, information provided by the JCPDS indicates that PdO_2 is unstable and decomposes at room temperature. The lattice parameter for the bcc In_2O_3 JCPDS standard is also provided in Table 7.

For both oxidized, polished and etched Pd-Ga alloys, the lattice parameter of the In_2O_3 phase was less than that for the

JCPDS standard, which may be due to substitution of smaller Ga⁺³ ions (Kingery *et al.*, 1976) for some In⁺³ ions. The normal room-temperature form of In₂O₃ has a bcc (thallium oxide-type) structure with a lattice parameter of 10.117 Å (Roth, 1957) and 16 molecules per unit cell (Marezio, 1966). It is likely that some special orientation relationship (favored by the relatively smooth and low-stress surface condition of the polished and etched alloys) exists between the crystal structure of In₂O₃ and the face-centered cubic structure of the palladium solid solution matrix for the Pd-Ga alloys, yielding a low-energy interface with preferred orientation of the oxide. Because of the roughened microtopography and substantial internal stresses, this orientation relationship does not exist for the oxidized air-abraded specimens, where the principal phase in the oxide layer was β -Ga₂O₄.

The same preferred orientation of the In_2O_3 phase appeared to exist in the oxide layers on both oxidized, polished and etched Pd-Ga alloys, where three of the strongest six peaks for the In_2O_3 JCPDS standard were missing: the strongest 222 reflection and the 440 and 431 reflections. However, despite

the extremely high degree of preferred orientation for the In_2O_3 phase on oxidized, polished and etched Legacy and Protocol, there was essentially no change in the lattice parameter of the underlying palladium solid solution matrix (Table 1), which only has a small amount of preferred orientation for these two as-cast alloys (Brantley *et al.*, 1995). This suggests that any strong metal-oxide interfacial bonds that would create substantial elastic strain in the oxidized layer must have a largely random orientation for the In_2O_3 phase.

For oxidized air-abraded Legacy and Protocol, the presence of the normally very weak peak (d = 1.744)Å) at approximately 52.6° in Figs. 4 and 6, respectively, indicated that the β -Ga₂O₃ phase in the oxide layer had preferred orientation. Similarly, for oxidized air-abraded Liberty, the presence of the normally very weak peak (d = 2.309 Å) at approximately 39.2° in Fig. 3 indicated that the SnO, phase in the oxide layer had preferred orientation. (Since none of the x-ray diffractometers used in this study were equipped with a θ -compensating slit, only the foregoing comments about preferred orientation of oxide species were deemed appropriate.) Because of the preferred orientation of these oxide phases, the average crystal sizes cannot be determined from the Scherrer formula (Cullity, 1978), using the breadth of the strongest peaks at half-maximum intensity. Nonetheless, from the strongest peaks for the oxide species in Figs. 1 - 6, it is estimated that the crystal sizes were smaller than approximately 0.5 µm.

It should be noted that the present XRD

identifications of phases in the oxide layers on the four high-palladium alloys are consistent with previous SEM/ EDS analyses of the near-surface regions of the cast and airabraded alloys after heat treatment simulating the full firing cycles for Vita VMK porcelain (Brantley*et al.*, 1993). For heattreated Spartan (with a composition very similar to Spartan Plus), submicron oxide particles with dimensions too small for EDS analyses were embedded in the palladium solid solution matrix, and there were increased concentrations of Ga and Cu

		ede verken er en die		
			an da an	
90	30.15	2.962	β-Ga ₂ O ₃ (2.9	971 and 54)
104	30.23	2.954	β-Ga ₂ O ₃ (2.9	945 and 49)
99	30.48	2.930	β-Ga₂O₂ (2.9	934 and 57)
167	31.88	2,805	β-Ga ₂ O ₃ (2.8	823 and 100)
98	34.04	2.632	PdO (2.647	and 100)
151	35.35	2.537	β-Ga ₂ O ₃ (2.	550 and 68)
127	38.55	2.334	β-Ga₂O₃ (2.0	344 and 38)
6,539	39.94	- 10 - 10 - 1	111 Palladiu	m solid solution
67	43.46	2.081	β-Ga ₂ O ₃ (2.1	101 and 10)
2,283	46,40		200 Palladiu	m solid solution
49	48.70	1.868	β -Ga ₂ O ₃ (1.8	372 and 16)
42	52.64	1.737	β-Ga,O, (1.7	744 and 1)
			Indicates pre	elerred orientation
44	54.69	1.677	PdO (1.676	and 20)
75	57.66	1.597	β-Ga ₂ O ₂ (1.6	500 and 18)
55	60.78	1.523	β-Ga,O, (1.5	520 and 18)
86	64.76	1.438	β-Ga,O, (1.4	142 and 46)
1,445	67.67		220 Palladiu	m solid solution
40	72.69	1.300	PdO (1.323	and 15)
52	77.33	1.233	β-Ga ₂ O ₂ (1.2	226 and 2)
1,158	81,41	Add - and	311 Palladiu	m solid solution
468	85.91		222 Palladiu	m solid solution

		a South Alexandre States South Constant Alexandre States
Organization Diag	0.0C	0.00
Spartan Plus	3.85	3.86
Liberty	3.89	3.86
Legacy	3.89	3.89
Protocol	3.93	3.92

compared to the bulk matrix. For heat-treated Liberty, submicron particles were also embedded in the palladium solid solution grains, and there were increased concentrations of near-surface Ga, Cu and Sn compared to the bulk matrix; massive grain boundary deposits were tentatively identified as Ga_2O_3 . After heat treatment, both Protocol and Legacy also

exhibited grain boundary deposits that were tentatively identified as Ga_2O_3 .

The role of the decomposition of PdO at elevated temperatures for bubble formation at the interface between dental porcelain and high-palladium alloys has been discussed (Volpe and Cadoff, 1993; Papazoglou *et al.*, 1996). It is conjectured that the time period in the present study for oxidation of the high-palladium alloys was insufficient for complete decomposition of PdO, compared to the longer time periods required for the complete porcelain firing cycles. The conditions for the formation and decomposition of both PdO and PdO·xH₂O are important areas for further investigation. It should also be noted that, in contrast to XRD, XPS analyses are not hindered by the effects of preferred orientation and crystal size (Barr, 1994).

Future research will employ XRD to determine changes in the oxide layers on these high-palladium alloys after complete porcelain firing cycles. Ideally, the changes in the composition of the oxide layer should be investigated with a series of model highpalladium alloys (and perhaps also with variations of the surface preparation techniques) in the manner that Ohno *et al.* (1983) did for gold alloys containing varying amounts of In and Sn. Moreover, direct measurement of the oxide adherence (Mackert *et al.*, 1988) for model high-palladium alloys may provide insight into the development of new compositions with improved metal-ceramic bonding.

ACKNOWLEDGMENTS

Support for this investigation was received from Research Grant DE10147 from the National Institute of Dental Research, Bethesda, MD. The authors wish to thank Professor Rodney J. Tettenhorst, Department of Geological Sciences, for the use of his diffractometer.

Received December 8, 1995 / Accepted June 25, 1996

Address correspondence or reprint requests to: William A. Brantley Section of Restorative Dentistry, Prosthodontics and Endodontics College of Dentistry The Ohio State University 305 West 12th Avenue Columbus, OH 43210-1241 USA Tel: (614) 292-0773 FAX: (614) 292-9422

REFERENCES

- Bagby M, Marshall SJ, Marshall Jr GW (1990). Effects of porcelain application procedures on two noble alloys. *JAppl Biomater* 1:31-37.
- Barr TL (1994). Modern ESCA. Boca Raton, FL: CRC Press, 5-29.
- Brantley WA, Cai Z, Carr AB, Mitchell JC (1993). Metallurgical structures of as-cast and heat-treated highpalladium dental alloys. *Cells Mater* 3:103-114.

TABLE CONST	TABLE 1 LATTICE PARAMETERS FOR THE PUPE OXIDE SPECIES COMPERPINDING TO THE PHASES IN THE OXIDE LAYERS ON THE HIGH PAY LADIUM ALLOYS				
CuGa₂O₄	Cubic (Spinel)	<i>a</i> = 8.298 Å	26-514		
SnO_x Cu ₂ O	Tetragonal Cubic	a = 4.7382 Å c = 3.1871 Å a = 4.2696 Å	41-1445 5-667		
ß-Ga _s O _s	Monoclinic	a = 12.236 Å b = 3.0399 Å c = 5.8120 Å	41.1400		
PdO•xH ₂ O*	Tetragonal	a = 2.994 Å c = 5.403 Å a = 3.0458 Å	9-254		
In ₂ O ₃	Body-centered cubic (Thallium oxide-type)	c = 5.3387 Å a = 10.118 Å	41-1107 6-416		

- Brantley WA, Cai Z, Foreman DW, Mitchell JC, Papazoglou E, Carr AB (1995). X-ray diffraction studies of as-cast highpalladium alloys. *Dent Mater* 11:154-160.
- Carr AB, Brantley WA (1991). New high-palladium casting alloys: Part 1. Overview and initial studies. *Int J Prosthodont* 4:265-275.
- Cascone PJ (1983). Oxide formation on palladium alloys and its effect on porcelain adherence. *J Dent Res* 62:255, Abstr. No. 772.
- Craig RG, editor (1993). Restorative Dental Materials. 9th ed. St. Louis: Mosby, 491-499.
- Cullity BD (1978). Elements of X-ray Diffraction. 2nd ed. Reading, MA: Addison-Wesley, 99-102, 356-357.
- Foster LM, Stumpf HC (1951). Analogies in the gallia and alumina systems. The preparation and properties of some low-alkali gallates. *JAm Chem Soc* 73:1590-1595.
- Geller S (1960). Crystal structure of β -Ga₂O₃. J Chem Phys 33:676-684.

- Hautaniemi JA, Juhanoja JT, Suoninen EJ, Yli-Urpo AUO (1990). Oxidation of four palladium-rich ceramic fusing alloys. *Biomater* 11:62-72.
- Kingery WD, Bowen HK, Uhlmann DR (1976). Introduction to Ceramics. 2nd ed. New York: Wiley, 56-61.
- Kohn JA, Katz G, Broder JD (1957). Characterization of β -Ga₂O₃ and its alumina isomorph, θ -Al₂O₃. Am Mineral 42:398-407.
- Mackert Jr JR, Ringle RD, Fairhurst CW (1983). Hightemperature behavior of a Pd-Ag alloy for porcelain. *J Dent Res* 62:1229-1235.
- Mackert Jr JR, Ringle RD, Parry EE, Evans AL, Fairhurst CW (1988). The relationship between oxide adherence and porcelain-metal bonding. *J Dent Res* 67:474-478.
- Marezio M (1966). Refinement of the crystal structure of In_2O_3 at two wavelengths. Acta Crystallogr 20:723-728.
- Marezio M, Remeika JP (1967). Bond lengths in the α -Ga₂O₃ structure and the high-pressure phase of Ga_{3-x}Fe_xO₃. J Chem Phys 46:1862-1865.
- Mezger PR, Stols ALH, Vrijhoef MMA, Greener EH (1988). Metallurgical aspects of high-palladium alloys. J Dent Res 67:1307-1311.
- Ohno H, Kanzawa Y, Kawashima I, Shiokawa N (1983). Structure of high-temperature oxidation zones of gold alloys for metal-porcelain bonding containing small amounts of In and Sn. J Dent Res 62:774-779.
- Papazoglou E, Brantley WA, Carr AB, Johnston WM (1993). Porcelain adherence to high-palladium alloys. J Prosthet Dent 70:386-394.
- Papazoglou E, BrantleyWA, Mitchell JC, Cai Z, CarrAB (1996). New high-palladium casting alloys: Studies of the interface with porcelain. *Int J Prosthodont* 9:315-322.
- Philips RW (1991). Skinner's Science of Dental Materials. 9th ed. Philadelphia: Saunders, 521-523.
- Ringle RD, Mackert Jr JR, Fairhurst CW (1983). An x-ray spectrometric technique for measuring porcelain-metal adherence. *J Dent Res* 62:933-936.
- Roth RS (1957). Classification of perovskite and other ABO₃type compounds. *J Res Natl Bur Std* 58:75-88.
- van der Zel JM (1989). High-temperature behavior of palladium-based dental alloys. Doctoral dissertation, University of Amsterdam.
- Volpe C, Cadoff I (1993). Oxidation kinetics of palladium alloyed with gallium, indium and silver. *J Dent Res* 72:305, Abstr. No. 1612.